
International Journal of Scientific & Engineering Research Volume 13, Issue 4, April-2022                                                                                759 
ISSN 2229-5518  

 

IJSER © 2022 

http://www.ijser.org 

 

 Remote SSH Tunneling Tool 
Devansh Gupta  

Computer Science & Engineering 

Meerut Institute of Engineering and 

Technology 

Meerut, India 

devansh.gupta.cs.2018@miet.ac.in 

 

Ashish Kumar  

Computer Science & Engineering 

Meerut Institute of Engineering and 

Technology 

Meerut, India 

info2ashish.cs@gmail.com 

 

 

Gauri Sharma 

Computer Science & Engineering 

Meerut Institute of Engineering and 

Technology 

Meerut, India 

gauri.shrikant.cs.2018@miet.ac.in 

 

Ajay Kumar Singh 

Computer Science & Engineering 

KIET Group of Institutions, Delhi-

NCR, Ghaziabad 

ajay41274@gmail.com 

Kanika Chaudhary 

Computer Science & Engineering 

Meerut Institute of Engineering and 

Technology 

Meerut, India 

kanika.chaudhary.cs.2018@miet.ac.in

 

Abstract— As technology is evolving day by day, the world is 

getting more connected and more volatile. In the modern world 

of technology, data is the most valuable asset one can have. 

People cannot afford to put their data on risk. The 

communication on the internet is not secure and is exposed to 

attacks. The login details, transactional details can be taken out 

and misused. The chief purpose of this paper is to show that data 

theft can be minimized by “SSH Tunneling”. In this work 

remote port forwarding and local port forwarding will be used. 

The idea of SSH tunneling is a good safeguarding mechanism in 

opposition to data breaches and can stifle communication on 

wireless networks. Also, how SSH tunneling provides 

encryption has been explained.  

Keywords—SSH tunneling,  Local port forwarding,  Remote port 

forwarding,  Packet sniffing,  Wireshark 

I. INTRODUCTION  

Almost every organization uses wireless communication or 
the internet for their day to day tasks. Usage of the internet 
also adds some notable threats. Subtle data of users can be 
taken out, changed or reiterated for unethical purposes. There 
is easy availability of tools which are used for data stealing. 
So it has become easier for hackers to compromise the data 
of users on the internet. The purpose of this paper is to show 
SSH tunneling as a solution for providing a secure connection 
between the client machine and the server machine to keep 
away from data attacks. Port forwarding is a Secure Shell 
(SSH) feature that allows non-safe TCP/IP traffic to be routed 
across both public and private networks via a secure and 
encrypted connection.[1] In this work both local and remote 
port forwarding using socket programming is used in order to 
achieve the tunneling between sites.  

Socket programming is a process which allows two nodes to 
be connected to each other for communication over a 
network. In this process, while the other node reaches out to 
build a connection, it listens on a certain port at an IP address. 
The server generates the listener socket while the client is 
connected to the server. 

Local port forwarding is a function that allows a port on a 
local machine (also known as an SSH client) to be forwarded 
to a port on a distant machine (also known as an SSH server), 
which is then forwarded to a port on the destination machine. 
The SSH client waits for connections on a certain port and 
forwards them to a remote SSH server, which subsequently 
connects to a port on the target system. The destination can 
be a remote SSH server or any other system.  

Distant port forwarding is a function that allows you to 
forward a port on a remote system (often referred to as an 
SSH server) to a port on a local machine (sometimes referred 
to as an SSH client), which is then forwarded to a port on the 
destination machine. The SSH server listens on a specific port 
and forwards any connections to that port to the local SSH 
client, which then connects to a port on the target system.[2] 
It makes no difference whether the destination machine is 
local or remote. 

  This research paper is arranged as follows: In section II, we 
will analyze packet sniffing attacks and describe the working 
of the Wireshark tool. In section III, we go over the basics of 
SSH tunneling, including how it's set up and how it operates. 
Concluding thoughts are offered in section IV, after that 
comes a list of references. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 13, Issue 4, April-2022                                                                                760 
ISSN 2229-5518  
 

IJSER © 2022 

http://www.ijser.org 

 

II. LITERATURE REVIEW 

Packet sniffing is the technique of collecting and monitoring 

active data which moves over a network to gain an abstract 

of what is going on. It is also known as packet or protocol 

analysis.[3] A packet sniffer is a tool that recognizes atomic 

data traveling across a network and packet analyzing or 

sniffing is performed on that data. Packet analysis can assist 

us in defining network features, determining who has been 

working on the network, determining frequency and 

operation, recognizing highest network operational time, 

detecting different probable attacks or unfavorable activities, 

and identifying less secure and unusual applications. Packet 

sniffing programs come in a variety of shapes and sizes.[4] 

Every program is created with specific goals and objectives 

in mind. TCP dump (a command-line program), OmniPeek, 

and Wireshark are examples of popular packet analysis 

programs.  

      A packet sniffer interrupts and logs data packets present 

in the network so that they can later be decrypted in 

accordance  with a set of rules. Wireless packet sniffers are 

frequently used because of their ability in network 

management and to monitor network activities at the MAC 

layer as well as layers above.[5] Packet sniffers, in particular, 

are commonly used to identify network problems and trace a 

specific task, but they can also be used to block sensitive or 

personal information like usernames and passwords. 

 

  Administrators can troubleshoot wireless networks using 

Wireshark's comprehensive wireless protocol analysis 

support. With the correct driver support, Wireshark can 

capture traffic "from the air" and decode it into a format that 

administrators can use to track down elements that are 

causing poor performance, irregular or weak connectivity, 

and a few other typical issues. Wireshark makes use of 

application programming interfaces (APIs) for recording 

network traffic, also called p cap, to capture packets. A 

variation in interfaces, including IEEE 802.11, Ethernet, and 

loopback interfaces, can be used to record live packet data. 

Recorded data can be presented along with detailed protocol 

information in the Wireshark GUI, and recorded data can be 

refined along with the generation of input/output statistical 

graphs.[6] Furthermore, the GUI makes it simple to track 

packets. Refining different features such as unique IP 

address, name of host or address of Ethernet host, TCP and 

UDP port numbers is possible with data packet filtering, 

which uses primitive expressions combined with and/or 

primitives.[7] 

 

   Packet sniffing is the process of recognizing, decrypting, 

auditing, and transcribing the data contained in a network 

packet on a TCP/IP network. The primary goal is to sniff and 

take away data, such as personal passwords, different port 

numbers, unique credit card numbers, user identities, network 

information, and so on. Sniffing is a type of "passive" attack 

in which the attackers are present but remain silent or hidden 

on the network.[7] As a result, it's complicated to spot and 

detect, making it a potentially deadly attack. TCP/IP packets 

contain critical information that allows interfaces of two 

different networks to communicate with each other. 

 

   Both the source and the destination fields include IP 

addresses, ports, sequence numbers, and protocol type. 

TCP/IP ensures that a packet is formed, placed on an Ethernet 

packet frame, and securely sent from the sender to the 

recipient over networks by virtue of its architecture. 

However, there are no measures in place to secure data by 

default. 

 

As a result, the responsibility for ensuring that data in packets 

is not tampered with falls to the top network layers. 

 

III. PROPOSED METHODOLOGY 

In this section, we will discuss the methodology that we will 

use to implement SSH Tunneling. SSH Tunneling is useful 

for sending network data from services that require an 

unsecured protocol, such as VNC or FTP, as well as accessing 

geographically-restricted content and getting through 

intermediate firewalls. Basically, any TCP port can be 

forwarded and traffic tunneled through a secure SSH 

connection.[8] It even provides us with an easy solution to 

expose HTTP/HTTPS endpoints over the Internet/Intranet. It 

can also be considered as an easy alternative over legacy SSH 

Port Forwarding Tools like Linux SSH Client, Putty etc.  

Virtual and secure tunnels over a wireless network are 

provided by the mechanism of SSH tunneling, in which client 

machine and server machine act as terminals of the tunnel. 

The virtual tunnel can be considered as a secured way to 

transport the data from the client node to the server node. All 

the data that passes through this virtual tunnel is by default 

secured. A virtual tunnel is required if a client wants to 

communicate or access the data of the server. The client can 

acquire this tunnel with the help of a mechanism called Port 

Forwarding. Over the internet, port forwarding allows 

computers or services in private networks to communicate 

with public or private computers or services. 

 

Our SSH Tool will have the following components –  

 

• Backend Server- It is used for authentication of Users. 

Successful authentication allows the users to create SSH 

Tunnels and further access the tool. 

 

• SSH Certificate Repository- It acts like an SSH certificate 

authority that provides SSH certificates to users so that they 

can use or access our tool to create SSH Tunnels. It is also 

used to hold the SSH Certificates for the users since we will 

use certificate based authentication for authenticating our 

users. An SSH certificate is a way for one SSH key to sign 

the signature of another SSH key. SSH Certificate based 

authentication uses a signed certificate attached to each key 

for verification of identities.[9] 

 

• Command Line Interface- The Command Line Interface 

(CLI) is a text-based application that allows users to reply to 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 13, Issue 4, April-2022                                                                                761 
ISSN 2229-5518  
 

IJSER © 2022 

http://www.ijser.org 

 

visual prompts by entering single commands and receiving 

an immediate answer. In our tool, CLI will be used to access 

the features of the tool through simple commands. 

 

• Graphical User Interface- A graphical user interface (GUI) 

is an interface that facilitates interaction with various 

electronic devices by using icons and other visual indicators. 

As the Command Line Interface may become quite 

complicated and challenging to learn, a Graphical User 

Interface will be developed. The GUI will provide us with an 

easy user friendly interface to access the tool. It is dependent 

on the Command Line Interface.  

 

• SSH Server- An SSH server is a piece of software that 

accepts connections from distant machines via the secure 

shell protocol. It can be established to manage SSH transfers. 

It will be used for the creating and accessing encrypted 

Tunnels. 

 

The SSH Tool will have the following features - 

 

Authentication - It involves user signup,  login and logout. 

 

Configuration Setup - It is used to set up local as well as 

environment variables. A local variable (also known as a 

Shell Variable) is used to configure the shell, store data, or 

output commands.[10] By default, it is local to a single shell 

and is not inherited by any child shells. On the other side, 

environment variables are used to configure other commands 

or applications. They are inherited by child shells. This 

configuration setup is dependent on the CLI. It includes - 

 

• Setup Configuration 

• View Configuration 

 

Local Tunnel Management - A Local SSH Tunnel is used to 

establish a connection between a local machine and a remote 

machine using TCP ports. In our SSH Tool, this feature will 

enable us to create a new as well as duplicate an existing local 

port. For example - copying the data of port X on port Y. It is 

also dependent on the CLI. It includes- 

 

• Connecting Local Tunnels- This service requires the source 

port (the port to duplicate) as well as the destination port (the 

newly available Port)  

 

• Disconnecting Local Tunnels- This service requires the 

destination port (the newly available Port) only. 

 

Remote Tunnel Management-  We can redirect a port on the 

distant machine to a port on the local machine using a Remote 

SSH Tunnel. We can create as well as disconnect remote 

tunnels through this feature. It is a very handy and easy to use 

feature through which we can have access to remote tunnels. 

It is dependent on CLI, Backend server,SSH Certificate 

Repository as well as SSH Server. It includes- 

 

 

• Connecting Remote Tunnels- This requires the source as 

well as destination port. 

 

• Disconnecting Remote Tunnels- This requires only the 

destination port. 

 

List Local/Remote Tunnels - Through this feature, the users 

will be able to see the list of created/available tunnels. It 

consists of simple commands, with filters to show only 

Local/Remote Commands. It is reliant on both the CLI and 

the Backend Server. 

 

 

The basic flow of working of our Tool (as shown in Fig 1) 

will be as follows- 

 

1. The GUI of our Tool will ask CLI to create SSH Tunnels. 

2. CLI would further ask the Backend Server for 

Authentication. 

3. The Backend Server is supposed to return an SSH 

Certificate for the user which it does by requesting the SSH 

Certificate Repository to give an SSH Certificate for the user. 

4. The Backend Server then returns this SSH Certificate to 

the CLI. 

5. The CLI then requests for Tunnel creation to the SSH 

Remote Server. 

6. SSH Remote Server updates DNS records if (custom) 

subdomain is requested. 

 

 

 

 

Figure 1. Methodology 

 

                                  IV.     RESULT DISCUSSION 

 

 

A. CONFIGURATIONS 

 

The configuration of SSH tunneling tool is described as 

follows- 

● To sign in to use the tool- 

sign- command for login/logout 

 

● To know the current user- 

whoami, who- reveals the current user 

 

● To make Local Tunnels- 

connect- makes a local tunnel from source port to destination 

port [11] 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 13, Issue 4, April-2022                                                                                762 
ISSN 2229-5518  
 

IJSER © 2022 

http://www.ijser.org 

 

● To disconnect local tunnels- 

disconnect- turn off the local tunnel 

 

● To set Command Line properties- 

set- sets CLI properties like remote server address 

 

● To get specific properties- 

get- gets any specific property e.g. get - - backend 

 

● To make remote tunnels- 

expose- makes a remote tunnel from source (on remote 

machine) to destination (on local machine) 

 

● To disconnect remote tunnel- 

unexpose- turn off the remote tunnel 

 

● To get the list of active tunnels- 

list- lists local/remote tunnels  

 

● To get any help- 

help, h- shows a list of commands or help for one command  

 

● To exit from the tool- 

exit, quit- exit gracefully  

 

B.  Result of Features 

 

● Creating Local Tunnels- 

 

Local Tunnel makes it simple to expose a web service on your 

local development workstation without having to fiddle with 

DNS or firewall settings. Local Tunnel will provide you with 

a unique publicly available URL that will be used to redirect 

all requests to your local web server. This functionality in our 

SSH tool will allow users to create a new local port as well as 

replicate an existing one. The result of this feature allows 

users to create and disconnect local tunnels with extreme 

ease. As shown in fig 2, a local tunnel has been created at port 

number 8080 which is used to access the source port i.e port 

number 8000. 

 

 

 

Figure 2. Local Tunnel 

 

● Creating Remote Tunnels 

 

 A remote tunnel enables remote control of items that are not 

connected to your local network. If you are simply and 

remotely controlling equipment on your company’s internal 

network, then you don’t need to set up a tunnel. As shown in 

fig 3, a remote tunnel has been created at port number 8080 

which is used to access the destination port i.e port number 

8000. 

 

 

 

Figure 3. Remote Tunnel 

 

● Listing of Tunnels- 

 

Listing of tunnel features results in a list of all the active local 

and remote tunnels. This feature can be accessed using both 

Command Line Interface and Graphical User Interface. Users 

can filter out the remote and local tunnels using GUI as per 

their convenience. A list of tunnels with their source and 

destination ports can be seen in fig 4. 

 

 

 Figure 4. List of Tunnels 

 

V.     CONCLUSION 

 

SSH tunneling is a simple and efficient method of delivering 

secure content over the internet. This method will protect 

internet usage from packet sniffing efficiently. When 

compared to other security measures for links, networks, and 

applications, as well as their setup and configuration, Secure 

Shell is a relatively safe, dependable, rapid, and simple 

programme. Companies can construct a comprehensive 

security system by implementing Secure Shell, a tunneling 

platform that can be utilized for a variety of purposes which 

deploy a wide range of security procedures to ensure data 

security, numerous people's privacy, legitimacy, 

authorisation, and integrity various applications This research 

paper explains the fundamentals and implementation of SSH 

Tunneling. 

 

 

VI.      REFERENCES 

 

1. D. J. Barrett and R. Silverman, “SSH, The Secure Shell - 

The Definitive Guide,” Book. p. 438, 2001 

2.  P. Range, “Port Forwarding,” Current. pp. 2008–2008, 

2008. 

3. Brian Wippich, “Detecting and Preventing Unauthorized 

Outbound Traffic”, GCIH Gold Certification, October 15th, 

2007. Copyright: SANS Institute. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 13, Issue 4, April-2022                                                                                763 
ISSN 2229-5518  
 

IJSER © 2022 

http://www.ijser.org 

 

4. Chris Sanders and Chris Sanders, "Practical Packet 

Analysis", May 17, 2007 ISBN-13: 978-1-59327-149-7.  

5. ANSI/IEEE, “802.11: Wireless LAN Medium Access 

Control (MAC) and Physical Layer (PHY) Specifications,” 

2000. 

6. Sung Jun Ban, Hyeonwoo Cho, Chang Woo Lee, and 

Sang Woo Kim, “Implementation of IEEE 802.15.4 Packet 

Analyzer”, International Journal of Electrical and Electronics 

Engineering, May, 2008. 

7. M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. 

Duda, “Performance Anomaly of 802.11b”, Proc. IEEE 

INFOCOM, April, 2003, pp. 836-843. 

8. Md. Kamrul Hasan, A.H.M. Amimul Ahsan, and M. 

Mostafizur Rahman, “IEEE 802.11b Packet Analysis to 

Improve Network Performance” JU Journal of Information 

Technology (JIT), Vol. 1, June, 2012. 

9. C. Lonvick, ‘Ed Cisco Systems Inc.’, “RFC 4251 - The 

Secure Shell (SSH) Protocol Architecture”, SSH 

Communications Security Corp, January, 2006, Copyright: 

The Internet Society 

10. H. Dwivedi, “Implementing SSH : strategies for 

optimizing the Secure Shell.” p. 376, 2004. 

11. P. Kirkbride, “Using SSH,” Basic Linux Terminal Tips 

and Tricks. pp. 89–106, 2020, doi: 10.1007/978-1-4842-

6035-7_5. 

 

. 

 

 

 

 

 

 

 

 

 

 

IJSER

http://www.ijser.org/



